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The performance of certain block codes on a gaussian channel is evaluated. Two of
these codes, the BCH codes of rates 1/2 and 1/3 and length 128, are markedly superior to
the constraint length 7 rate 1/2 convolutional code currently used for deep space

missions.

l. Introduction

If one wishes to improve the performance of deep space
telemetry beyond the capabilities of short constraint length
convolutional codes currently in use, perhaps the most promis-
ing approach involves the soft decision decoding of block
codes. With this in mind we have employed a general decoding
process of Solomon, called “decoding with multipliers”
(Ref. 1), to evaluate the performance of certain block codes
on a gaussian channel. Two of these codes, the BCH codes of
length 128 and rates 1/2 and 1/3, show marked superiority
over the constraint length 7 rate 1/2 convolutional code
currently in use.

Earlier block code simulations for a gaussian channel are
described in Refs. 2-4.

il. Soft Decision Decoding

If a binary quantizer is added to a gaussian channel its
capacity is diminished by a factor of #/2(~2 dB). Thus,
optimal code performance on a gaussian channel cannot be
achieved by a hard limiting decoding process.
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The algorithm used to derive these results provides a basis for a simple, almost
optimum procedure for decoding these codes.

By soft decision decoding we mean any decoding process
which makes use of the relative magnitudes of the received
code symbols. In this article we use a particular soft decision
decoding process -of Solomon which applies to all linear codes
and has the advantage that it does not require the use of a
binary decoding algorithm. Thus, it is perfectly general and
can be used, for example, to decode the quadratic residue
codes.

Suppose a codeword w=w, ..., w, from a binary (1n,k)
linear code is transmitted over a memoryless zero mean gaus-
sian channel. The code symbols are assumed to be 1. Thus a
received codeword is a sequence of n real numbers, each
number representing the integrated value of w; +7; over one
symbol time — n; being the noise. Since the noise is zero mean,
the absolute value of these real numbers is a measure of their
reliability (the larger the absolute value, the higher the proba-
bility that the hard limited version of the real number actually
is w;). In the decoding technique used, the j least probably
correct symbols are determined and excluded from considera-
tion. Then k of the remaining n - j symbols are assumed to
have proper sign and all codewords (if any) of the code whose
signs agree in these & places are constructed. The codewords so



constructed are correlated with the sequence of real numbers
from the receiver. Several choices of k of the remaining n - j
symbols are made. Among all the codes words thus generated,
that one having the maximum correlation value is assumed to
have been sent.

Iil. Simulation Results

The number Q = (k/n) « d, where d is the minimum dis-
tance of a linear code, is a measure of its asymptotic decoding
behavior, since

1
lim —logP =-
Jmolost Q

where v is the bit signal-to-noise ratio and P, is the bit error
probability. Thus, the bigger Q is the better the code should
perform, at least for large 7.

As a point of reference our performance graphs show
curves for “no coding” and for the maximum likelihood per-
formance of the 7, 1/2 convolutional code being used on
NASA’s Mariner-class spacecraft (Ref. 5).

A. The (48,24) Quadratic Residue Code

This code is a 5-error-correcting block code with @ =6.0.
Two different decodings of this code were simulated. The first
of these had j =8, and 130 k-tuples of positions were selected
from the remaining n - j = 40 positions in such a way that all
(";i) of the 4-tuples were omitted from at least one of these
k-tuples. Thus, if there were no more than four hard decision
errors among the 40 positions most probably correct, the
decoding process would necessarily construct the correct code-
word. So, in that instance, the only possible errors would also
be made by a maximum likelihood decoder.

The second decoding was done for j = 16 with 124 k-tuples
such that all 3-tuples from the n - j = 32 remaining positions
were excluded from at least one of the 124. This performed
better, as is shown in Fig. 1. In fact, since about 90% of the
errors in this simulation were identifiably maximum likelihood
errors, it is reasonable to conclude that this decoding is essen-
tially a maximum likelihood decoding of the (48,24) quadratic
residue code.

B. The (80,40) Quadratic Residue Code

This code is a 7-error-correcting code with @ = 8.0. Five
decodings were simulated for this code. The best performance

occurred for two different decodings. The first of these had
j=28 and 130 k-tuples from the remaining 52 positions such
that all (532) triples of positions were omitted from k-tuple.
The other used j =36 and 165 k-tuples from the remaining 44
positions such that all pairs of positions were omitted from
some k-tuple. Figure 2 shows the performance curve for these
two decodings as well as our estimate of the maximum likeli-
hood behavior of the code. This estimate is based on the
identifiably maximum likelihood errors which occurred during
the simulation.

C. The (128,64) BCH Code

This is a 10-error-correcting block code with 0 =11.0.
Several different decodings were tried here. We tried k-tuples
for j= 40, 55 and 56 such that 3, 2 and 2 errors would be
allowed among the 88, 73 and 72 remaining most reliable
positions. The results were not very good. Note that this kind
of selection of the k-tuples really divides the received symbols
into two classes: n - j symbols among which k are sought with
the correct sign and the other j. Within these classes, all
symbols are treated the same — just as if they were equally
likely to be in error. This is, of course, not a valid assumption.
We tried a further breakdown of the n-j symbols in one
decoding as follows: j=40, n-j= 88 and these 88 symbols
were ordered by magnitude to establish their relative error
probability. The 16 most likely correct were assumed to be
correct; two errors were allowed among the next 40 most
likely correct positions and four errors were allowed among
the remaining 32. This performed better than the simpler
collections of k-tuples mentioned above.

The improved performance in this last decoding suggested
that we might try to match the finer gradations of error
probability among the symbols a little more closely. We did
this by gathering (at 1.5 dB’s) the error frequencies of the least
likely correct, ..., most likely correct symbols. Then we
constructed k-tuples by a random placing of 1’s approximately
in accordance with the entropy of these error frequencies. This
collection of k-tuples performed much better than the previ-
ous collections, and when 1500 of them were used, the iden-
tifiably maximum likelihood errors predominated; so much so
that it is reasonable to assume that the performance achieved
(Fig. 3) is within 0.1 dB of maximum likelihood behavior.

As a by-product of this simulation we also determined that
the number of minimum weight (=22) codewords of this code
is almost certainly 243,840 (see Ref. 6 for details of this
determination).
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D. The (128,43) BCH Code

This is a 15-error-correcting code with Q=10.75. It was
decoded using 1500 k-tuples selected to fit the observed error
statistics at 1.5 dB, as described in more detail above for the
(128,64) code. Within the accuracy of this simulation the
performance of this code (Fig. 4) is the same as the (128,64)

code and seems also to be within 0.1 dB of its maximum
likelihood behavior.

Much of the analysis of Ref. 6 applies to this code also, and
using it we can conclude that the number of minimum weight
(=32) codewords of this code is almost certainly 124,460.
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